A theoretical investigation of microhydration of amino acids
نویسندگان
چکیده
Water plays a role in stabilizing biomolecular structure and facilitating biological function. Water can generate small active clusters and macroscopic assemblies, that are able to transmit information on various scales [1]. Protonation and microhydration of proteins or DNA are of fundamental importance in biochemical processes such as proton transport, water-mediated catalysis, molecular recognition, protein folding, etc. The understanding of these hydration effects at the molecular level requires the characterization of the interactions between biomolecules and their environment. Due to its relevance in many fields, the microhydration process of nucleic acid bases or amino acids has received a widespread attention [2]. In this work, we first describe the microhydration of protonated amino acid (AA), and particularly of protonated glycine (GlyH+) [3][4], alanine (AlaH+) [5] and proline (ProH+) [6]. First a high-level theoretical method was setting up in order to compute the structures and properties of GlyH+-water complexes, Gly being the simplest AA and a suitable model for such a study. Then complexes with more than one water molecule as well as other amino acids (Ala and Pro) were investigated, to extend the validity domain of our computational procedure. We then investigate a series of complexes made up of a deprotonated (anionic) AA and a single water molecule [7]. Such species have recently been identified with mass spectrometry, allowing meaningful comparisons between theoretical and experimental complexation energies. The selected systems are [Gly-H]-, [Ala-H]-, [Val-H]-, [Asp-H]-, [Gln-H]-, as well as the acetic acid as a model benchmark.
منابع مشابه
Theoretical study of the solvent effects on the thermodynamic functions of Alanine and Valine Amino Acids
Using Gaussian 03, software the thermodynamic functions such as Gibbs free energy, G, Enthalpy, H, and Entropy, S, of Alanine and Valine amino acids were theoretically studied at different solvents. First, the Density Functional Theory (B3LYP) level with 3-21G, 6-31G and 6-31+G basis sets were employed to optimization of isolated Alanine and Valine amino acids in the gas phase. Moreover, Vib...
متن کاملApplication of the Freundlich Langmuir Temkin and Harkins-Jura adsorption isotherms for some amino acids and amino acids complexation with manganese kn(ll) on carbon nanolube
In lb is research, adsorption of some amino acids and their complenation with manganese (II) ion on carbonnanotube (MWCNT) by using of four relations Langmuir, Freundlich. Temkin and Harkins -Jura imitherms wasinvestigated. From this relations. Freudlich and Temkin relations predict good equilibrium diagram in, isothermcondition. we could compute the theoretical constants by excel software. Hy ...
متن کاملTheoretical Thermodynamic Study of Arginine and Lysine Amino Acids at different Solvents
The thermodynamic functions such as enthalpy, H°, Gibbs free energy, G°, and entropy, S°, of Arginine and Lysine amino acids were theoretically studied at different polar solvents by using ²Gaussian o3², software. First, the structural optimization of isolated Arginine and Lysine were done in the gas phase by applying the Density Functional Theory (B3LYP) level ...
متن کاملMetal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure
The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...
متن کاملTheoretical Thermodynamic Study of Solvent Effects on Serine and Threonine Amino Acids at Different Temperatures
The thermodynamic functions such as enthalpy (H), Gibbs free energy (G) and entropy (S) of Serineand Threonine amino acids were theoretically studied at different condition (solvents andtemperatures) by using Gussian o3, software. First, the structural optimization of isolated Serine andThreonine were done in the gas phase by using the Hartree-Fock (HF) level of theory with 3-21G, 6-31G and 6-3...
متن کامل